

Current Transducer LT 1005-S/SP36

 $I_{PN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical	data
------------	------

ī	Primary nomina	lrms current				1000	1		A
I _{PN}	Primary nominal r.m.s. current Primary current, measuring range			0 ± 2400			A		
\mathbf{R}_{M}	Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$		$T_{\Lambda} = 85^{\circ}C$						
IVI			R _{M min}	$\mathbf{R}_{\mathrm{Mmax}}$		R	M min	\mathbf{R}_{Mmax}	
	with ± 15 V	@ ± 1300 A _{max}	0	10	@ ± 1250			10	Ω
		@ ± 1400 A max	0	7			0	5	Ω
		@ ± 1500 A max	0	4	@ ± 1450) A 1)	0	3	Ω
	with ± 24 V	@ ± 2200 A max	0	10	@ ± 2100) A 1)	3	10	Ω
		@ ± 2300 A _{max}	0	7			3	5	Ω
		@ ± 2400 A max	0	5			3	3	Ω
I _{SN}	Secondary nom	inal r.m.s. curren	t			200			mΑ
K _N	Conversion ratio				1 : 5000				
v _c	Supply voltage (± 5 %)			± 15 24 V				V	
Ic	Current consumption $30(@\pm 24 \text{V}) + I_s \text{ m}$					mΑ			
\mathbf{V}_{d}	R.m.s. voltage f	or AC isolation te	st, 50 l	Hz, 1 r	mn	12 ²⁾			kV
						1.5 3)			kV
$\mathbf{V}_{_{\mathrm{e}}}$	R.m.s. voltage for	or partial discharg	e extin	ction	@ 10 pC	4.1			kV

Accuracy - Dynamic performance data

\mathbf{e}_{G}^{G}	Overall accuracy @ I_{PN} , $T_A = 25$ °C Linearity error		± 0.5 < 0.1		% %
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C	0500 . 7000	Тур	Max ± 0.4	mA
I _{OT}	Thermal drift of I _o	- 25°C + 70°C - 50°C + 85°C	± 0.2	± 0.5 ± 0.8	mA mA
t _r di/dt f	Response time 4) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

T _A	Ambient operating temperature		- 40 (-50)	+ 85 °C	
T _s	Ambient storage temperature		- 50 + 85	°C	
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	40	Ω	
		$T_A = 85^{\circ}C$	42	Ω	
m	Mass		700	g	
	Standards		EN 50155 : 1995		

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 2400 A$
- $V_{c} = \pm 15 ... 24 \text{ V } (\pm 5 \%)$
- $V_d = 12 \text{ kV}^{2)}$
- $T_A = -40^{\circ}C (-50^{\circ}C) ... + 85^{\circ}C$
- Secondary connection on screened cable 3 x 0.5 mm² and connector SUB-D 9P (female)
- Shield between primary and secondary connected to the cable screening.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

Traction

Notes: 1) I_{P max} @ +85°C & customer measuring resistance

- ²⁾ Between primary and secondary + internal shield + screened cable
- 3) Between secondary and internal shield + screened cable
- 4) With a di/dt of 100 A/µs.

060620/2 page 1/2

Dimensions LT 1005-S/SP36 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

Transducer fastening
 4 holes Ø 6.5 mm
 Tempera

4 M6 steel screws

Recommended fastening torque 5 Nm or 3.69 Lb. - Ft.

• Primary through-hole 40.5 x 40.5 mm

Connection of secondary screened cable 3x0.5 mm²

and connector SUB-D 9P

(female)

Connection to terminal E M4 threaded stud
 Recommended fastening torque 1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.